Pular para o conteúdo principal

Exemplo de utilização de Programação Linear


Suponha que uma empresa produza quatro modelos diferentes de brinquedos. Cada um deles gera uma quantidade de lucro diferente ao ser vendida. O brinquedo 1 gera $10 de lucro, o 2 gera $8, o 3 gera $9 e o 4 gera $7. A função que determina o lucro da empresa é:
Assumindo que as variáveis são a quantidade de cada brinquedo que é vendida.
Esta é uma função linear, pois cada um dos termos da equação que a forma é uma constante ou um produto entre uma constante e um valor variável. Suponha agora que nós estamos interessados em descobrir qual é o maior lucro possível para esta empresa assumindo que o número máximo de vendas do brinquedo 1 é 100, do brinquedo 2 é 60, do brinquedo 3 é 40 e do brinquedo 4 é 70. Podemos então expressar este problema da seguinte forma:
Máx  (Função Objetivo)
 (Restrição 1)
 (Restrição 2)
 (Restrição 3)
 (Restrição 4)
 (As variáveis de decisão são não-negativas)
O que temos acima é um modelo de Programação Linear. Ele é formado sempre por uma função linear (que é a função objetivo) e por um conjunto de ineqüações lineares (restrições do problema). No exemplo acima, desejamos obter o maior lucro possível (maior valor de Z). O objetivo da programação linear é justamente fornecer ferramentas para resolver o desafio de encontrar o maior ou o menor valor possível em uma função linear cujas variáveis possuem restrições.
Assim, o problema geral de programação linear pode ser definido por:
Maximizar (ou minimizar) a função objetivo:

sujeita às restrições:



a

considerando que todas as variáveis de decisão assumem valores positivos:
 

Comentários

Postagens mais visitadas deste blog

Método Simplex (parte 2) - Exemplo

Exemplo: método Simplex Solução através do método Simplex do Problema seguinte: Maximizar Z = f(x,y) = 3x + 2y sujeita às restrições: 2x + y ≤ 18                                   2x + 3y ≤ 42                                   3x + y ≤ 24                                   x ≥ 0 , y ≥ 0 Consideram-se as seguintes fases: Realizar uma mudança de variáveis e normalizar o sinal dos termos independentes. Realiza-se uma mudança na nomenclatura das variáveis. Estabelecendo a seguinte correspondência: x passa a ser X1 y passa a ser X2 Como os termos independentes de todas as restrições são positivos não é necessário fazer nada. Caso contrário, se deverá multiplicar por "-1" ambos os lados da inequação (considerando que est...

Matrizes

Matrizes são organizações de informações numéricas em uma tabela retangular formada por linhas e colunas. Essa organização em uma tabela facilita que se possa efetuar vários cálculos simultâneos com as informações contidas na matriz. Definição de matrizes Toda matriz tem o formato m x n (leia-se: m por n, com n e m ∈ N*), onde m é o número de linhas e n o número de colunas. Representação de matrizes Existem diversas maneiras de representarmos matrizes, veja quais são: Colchetes: [ ] Parênteses: ( ) Barras Simples: | | Barras Duplas: || || Essas são as representações mais comuns que encontramos na literatura. Exemplos: Elementos de uma matriz Seja a matriz genérica Amxn, isto é, m representa as linas e n o número de colunas. Então, temos: Elementos de uma matriz Seja a matriz genérica Amxn, isto é, m representa as linas e n o número de colunas. Então, temos: Dessa forma, os elementos da matriz A são indicados por aij, onde o i representa o índice da linha e j...

Método Gráfico (parte 2) - Exemplo

Solução através do método gráfico o seguinte problema: Maximizar Z = f(x,y) = 3x + 2y sujeita às restrições: 2x + y ≤ 18   2x + 3y ≤ 42   3x + y ≤ 24   x ≥ 0 , y ≥ 0 1.Inicialmente, o sistema de coordenadas da associação de um eixo com variável "X" e o outro o "Y" é desenhado (geralmente associa-se "x" em relação ao eixo horizontal e o "y" ao vertical), como pode ser visto na figura. 2.Nestes eixos, marca-se uma escala numérica apropriada aos valores que podem assumir as variáveis conforme as restrições do problema. Para isto, em cada restrição anulam-se todas as variáveis, exceto aquelas que correspondem a um eixo concreto, estabelecendo o valor adequado para este eixo. Este processo é repetido para cada um dos eixos. 3.As restrições são representadas a seguir. Primeiramente, desenha-se a reta que é obtida ao considerar a restrição como uma igualdade. Ela é representada como o segmento que une A com B e região que delimita esta ...