Pular para o conteúdo principal

A História da Programação Linear

O desenvolvimento de técnicas algébricas para se lidar com inequações lineares é algo bastante antigo. Durante o século XVIII, o matemático e físico Jean-Baptiste Joseph Fourier desenvolveu vários métodos inovadores para se resolver sistemas de ineqüações. Um dos principais algoritmos desenvolvido por Fourier foi o Método de Eliminação de Fourier–Motzkin.

Durante a Segunda Guerra Mundial, novas tecnologias bélicas levaram à criação de grupos acadêmicos com o objetivo de resolver problemas como o uso eficiente de radares, canhões antiaéreos, escoltas navais, etc. O objetivo era sempre reduzir custos militares e buscar maximizar as baixas inimigas. Para resolver estes problemas, a Programação Linear mostrou-se extremamente útil. Os grupos acadêmicos que a utilizavam eram sempre mantidos secretos até o ano de 1947, após o término da guerra. Foi quando a Programação Linear passou a ser muito usada em empresas com o objetivo de reduzir despesas e maximizar lucros.

Também no ano de 1947, o matemático George Dantzig desenvolveu o Algoritmo Simplex, a maneira mais eficiente conhecida de se resolver modelos de Programação Linear. No mesmo ano, John von Neumann desenvolveu a teoria da dualidade e Leonid Kantorovich foi a primeira pessoa a aplicar a Programação Linear à Economia.

Em 1979, Leonid Khachiyan desenvolveu um novo algoritmo para resolver modelos de programação linear: o Algoritmo Elipsóide. O seu algoritmo foi o primeiro criado que era capaz de resolver problemas em tempo polinomial. Apesar disso, era mais lento que o já conhecido Algoritmo Simplex, tanto na teoria como na prática.

Em 1984, surge mais um método de se resolver problemas de pesquisa operacional: o Algoritmo do Ponto Interior, criado por Narendra Karmarkar. Assim como o Algoritmo Elipsóide, ele era polinomial. A diferença é que ele era bem mais rápido e conseguia competir com o Algoritmo Simplex.

Comentários

Postagens mais visitadas deste blog

Método Simplex (parte 2) - Exemplo

Exemplo: método Simplex Solução através do método Simplex do Problema seguinte: Maximizar Z = f(x,y) = 3x + 2y sujeita às restrições: 2x + y ≤ 18                                   2x + 3y ≤ 42                                   3x + y ≤ 24                                   x ≥ 0 , y ≥ 0 Consideram-se as seguintes fases: Realizar uma mudança de variáveis e normalizar o sinal dos termos independentes. Realiza-se uma mudança na nomenclatura das variáveis. Estabelecendo a seguinte correspondência: x passa a ser X1 y passa a ser X2 Como os termos independentes de todas as restrições são positivos não é necessário fazer nada. Caso contrário, se deverá multiplicar por "-1" ambos os lados da inequação (considerando que est...

Matrizes

Matrizes são organizações de informações numéricas em uma tabela retangular formada por linhas e colunas. Essa organização em uma tabela facilita que se possa efetuar vários cálculos simultâneos com as informações contidas na matriz. Definição de matrizes Toda matriz tem o formato m x n (leia-se: m por n, com n e m ∈ N*), onde m é o número de linhas e n o número de colunas. Representação de matrizes Existem diversas maneiras de representarmos matrizes, veja quais são: Colchetes: [ ] Parênteses: ( ) Barras Simples: | | Barras Duplas: || || Essas são as representações mais comuns que encontramos na literatura. Exemplos: Elementos de uma matriz Seja a matriz genérica Amxn, isto é, m representa as linas e n o número de colunas. Então, temos: Elementos de uma matriz Seja a matriz genérica Amxn, isto é, m representa as linas e n o número de colunas. Então, temos: Dessa forma, os elementos da matriz A são indicados por aij, onde o i representa o índice da linha e j...

Método Gráfico (parte 2) - Exemplo

Solução através do método gráfico o seguinte problema: Maximizar Z = f(x,y) = 3x + 2y sujeita às restrições: 2x + y ≤ 18   2x + 3y ≤ 42   3x + y ≤ 24   x ≥ 0 , y ≥ 0 1.Inicialmente, o sistema de coordenadas da associação de um eixo com variável "X" e o outro o "Y" é desenhado (geralmente associa-se "x" em relação ao eixo horizontal e o "y" ao vertical), como pode ser visto na figura. 2.Nestes eixos, marca-se uma escala numérica apropriada aos valores que podem assumir as variáveis conforme as restrições do problema. Para isto, em cada restrição anulam-se todas as variáveis, exceto aquelas que correspondem a um eixo concreto, estabelecendo o valor adequado para este eixo. Este processo é repetido para cada um dos eixos. 3.As restrições são representadas a seguir. Primeiramente, desenha-se a reta que é obtida ao considerar a restrição como uma igualdade. Ela é representada como o segmento que une A com B e região que delimita esta ...